Commodity Ethernet Clusters - Maximizing Your Performance

Bob Felderman
CTO
Precision I/O

Ethernet Clusters: What do you think of?
Ethernet Clusters: What you’d like to see

High performance clusters using commodity Ethernet technology to accomplish HPTC tasks.

Ethernet Clusters: The Reality

- Rack ‘n’ Stack with Gigabit Ethernet switches. Generally 1U or 2U systems.
- Often home-grown, especially at Universities
- Certainly available pre-configured from many vendors (Dual GigE is standard on many motherboards).
- Most clusters installed today are GigE.
- Blade-based system backplanes are now GigE and InfiniBand too. Some PCIExpress soon.
Why so few “big iron” Ethernet clusters?

- **Performance**
 - Bandwidth
 - Is 1 GigE sufficient?
 - Latency (time to get a message from here to there)
 - Overhead (work the CPU has to do per message)
 - Switch issues
 - Latency
 - Size (number of ports)
 - Flow-Control (xon/xoff messages versus hardware flow-ctrl)

- **What about Price/Performance? Does it matter?**
 - Acquisition cost and ongoing cost of operation

- Ethernet clusters are employed successfully today for embarrassingly parallel problems or for small-scale parallel tasks.

Bandwidth

- **Is 1GigE enough?**
 - Dominant cluster interconnect is Myrinet at 2Gig

- **10Gigabit Ethernet is available today**
 - Intel, Neterion, Chelsio and others

- **Various physical media**
 - Fiber is common (and expensive)
 - Copper will happen in some form
 - CX-4 used by IB and appearing in 10GigE
 - Twisted Pair - a must for economic deployment?
 - Fat copper versus thin fiber

- **Some standardization efforts at 2Gig and 5Gig**
 - Not likely to happen unless the PHY is the big issue
Latency/Overhead (this is the problem)

- **Ethernet Latency measured via the standard sockets kernel path.**
 - Traditionally this has been expensive
 - System calls, interrupts, kernel locks
 - May no longer be so bad
 - 3GHz Xeon running Linux-2.4.20
 - 20usec one-way latency via kernel path
 - But the 20usec is mostly time that the CPU is busy sending or receiving (overhead!)
 - Quoted Ethernet latency is highly CPU-speed dependent. IB, Myrinet, Quadrics mostly independent of host CPU.

Latency/Overhead Solutions

- **“TCP is heavyweight”**
 - TCP Offload Engines (TOEs)
 - Move protocol processing to the NIC
 - But, is protocol processing really the performance problem?

- **Data movement is expensive**
 - TOE + RDMA-NICs (RNICs)
 - Allows direct data placement like VIA/Infiniband
 - Also has OS bypass opportunities
 - Cache load is the expensive operation, so RDMA benefit may be less than expected for HPTC applications
 - data wants to meet processing cycles

- **Infiniband, Myrinet, Quadrics etc. have direct user-level access to the network**
 - Much easier to get low latency that way
What is the “Best” Host Interface/API?

- Traditionally, HPC programmers have been willing to try anything to get performance.
 - But, MPI is really the application programming paradigm of choice.
 - MPI over GM, over IB, over VIA etc.
- MPI over Sockets (e.g. MPICH ch_p4) is the common API for Ethernet solutions.
- If you want to leverage mass market and commodity parts, then sockets/IP/Ethernet is the way to go!
 - Assuming you can get the performance you want/need
 - You improve non HPC apps at the same time
 - CPU Overhead is the important metric

Ethernet: The Precision I/O Contribution

- 100% IP/Ethernet host-side solution
 - Software-only at 1Gig – in Beta test today
 - Hardware and Software for 10GigE

- Dramatically increases server application capacity
 - Higher I/O throughput
 - Improved CPU utilization / Higher transaction capacity
 - Lower latency

- General-purpose
 - Supports a broad range of enterprise-class applications
 - Benefits both short transactions and streaming workloads

- Non-disruptive
 - Supports incremental deployment - one server at a time
 - Only required on one end of the connection - no client changes
 - No new fabric, protocols, packet formats, or infrastructure required
 - No application or operating system changes required
Precision I/O: Solution Overview

- Speed Performance for Today's 1 Gigabit Ethernet Network
 - PacketFlow MPI
 - Software product that extends the life and investment in existing GigE networks
 - Increases MPI performance by 2x
 - Improves associated application performance 20-50%
 - Available for Beta Test Today!

Q3' 2005

Precision PacketFlow bypasses the OS, significantly speeding network I/O performance.

Precision I/O: Solution Overview

- Speed Performance for Today's 1 Gigabit Ethernet Network
 - PacketFlow MPI
 - Software product that extends the life and investment in existing GigE networks
 - Increases MPI performance by 2x
 - Improves associated application performance 20-50%
 - Available for Beta Test Today!

Q3' 2005

Lower Latency by reducing time spent on System Calls

- System Call
- TCP/IP Processing
Precision I/O: Solution Overview

- **Speed Performance for Today's 1 Gigabit Ethernet Network**
 - PacketFlow MPI
 - Software product that extends the life and investment in existing GigE networks
 - Increases MPI performance by 2x
 - Improves associated application performance 20-50%
 - Available for Beta Test Today!

- **Deliver Higher Bandwidth Standard Ethernet (10Gb) for Future Networks**
 - PacketDirect 10Gigabit Ethernet
 - Adds hardware in combination with Precision PacketFlow™ software to deliver 10-gigabit, wire rate performance.
 - Incremental migration from today's 10 GigE deployments
 - Standards based
 - Easy to support
 - Affordable

Q3’ 2005

H1’ 2006

Ecosystem Issues

- **What are the ecosystem concerns for Ethernet?**
 - Fortunately they are quite limited
 - Ethernet/IP is ubiquitous
 - Customers in other domains (and HPTC too) want Ethernet and IP everywhere
 - Key issue: Switch Performance and Scaling
 - Number of ports
 - Latency through switch
Current Ethernet Switch Landscape

- **Most current 1GigE switches have too few ports and too much latency to be interesting.**
 - Typically 5 to 50 usec
 - when you have 100 usec latency on the host, who cares about the switch latency?
 - Latency is often directly proportional to price! (*NOT* inversely)
 - Small number of ports means a deep tree of switches and more latency end-to-end.
- **10GigE switches don’t look much better**

If you want it, you’ve got to ask

- **Switch vendors are not yet focused on HPC.**
 - These features don’t help HPC clustering
 - Layer 4-7 “awareness”
 - Fire walling
 - Load balancing
 - Adding 10GigE as an uplink isn’t sufficient
 - Go out and ask for a layer-2 switch with
 - high-port count
 - low-latency (1 usec or less)
But at least one vendor is on board!

- **Fujitsu Labs of America**, “A Single Chip Shared Memory Switch with Twelve 10Gb Ethernet Ports” Hot Chips 15, August 2003
 - Focus on layer-2 switching
 - High-throughput, low-latency core
 - SerDes integration
 - Copper 700ns latency, Optical 1,200ns
- **Shipping today in switches** (450ns port-to-port latency)

Summary: Fast Transparent Performance

- Extends the life and investment of existing Gigabit Ethernet networks.
 - Precision PacketFlow™ MPI significantly improves the performance of your existing MPI applications
 - Available for beta testing today!
- Transparently increase application performance
 - Precision I/O solutions deliver dramatic performance improvements yet require no changes to your application, OS or network
- Provides a gradual migration path to future 10 GigE networks
 - Start with Precision PacketFlow today to increase 1 GigE performance
 - Migrate to Precision PacketDirect 10GigE NIC gradually over time
 - Supports incremental deployment - one server at a time
 - Only required on one end of the connection - no client changes
 - No new fabric, protocols, packet formats, or infrastructure required
 - No application or operating system changes required
Precision I/O
4005 Miranda Ave., Suite 210
Palo Alto, CA 94304-1232
650-331-8000
http://www.precisionio.com
Bob.Felderman@precisionio.com

Company

Founded: February 2003 (spun out of Packet Design LLC)
Location: Palo Alto, CA
Employees: 45
Funded: Q1 2004, Q3 2005: Foundation Capital, ATV, 3i
Market status: 1 Gigabit Ethernet performance boosting software in beta today

- Derek Proudian, CEO
 HP, Mohr Davidow, Zip2, Panasas
- Bob Felderman, CTO
 USC/ISI, Myricom
- Ed Roseberry, VP OEM & Biz Dev
 HP, 3Com, Alteon, Nortel, S2io/Neterion
- Dan O’Farrell, VP Marketing
 HP, N.E.T., interWAVE, Sun, Perbit
- Judy Estrin, Chairman
 Cisco, Precept, NCD, 3Com, Bridge
- Van Jacobson, Chief Scientist
 Cisco, Lawrence Berkeley Labs
- Narendra Dhara, VP Engineering
 LSI, NEC, Corona Networks, IntruGuard